Détail de la notice
Titre du Document
On optimality of physically nonlinear fully-stressed structures
Auteur(s)
CHEKHOV V. V.
Résumé
We consider discrete models of fully-stressed (in one special case of loading) structures having a given geometry and consisting of several materials. Sufficient conditions of optimality and convergence of the stress ratio algorithm are obtained for such structures, with their physical nonlinearity being taken into account. These conditions can be used for choosing the materials ensuring the optimality and the convergence, without design calculations or stress state analysis. For structures made of arbitrary materials, the optimality condition obtained here can be utilized for heuristic evaluation of the lower bound of the level of stresses which should take place in the optimal design (without finding the design itself), and to indicate some fully-stressed members of an optimally designed structure. The design corresponding to this lower bound can be obtained by the same means as a fully-stressed design and may appear to be closer to the optimal design than the latter. As an illustration, we consider the problem of designing a beam made of two materials and working in transverse bending.
Editeur
Springer
Identifiant
ISSN : 0025-6544
Source
Mechanics of solids A. 2002, vol. 37, n° 6, pp. 105-113 [9 pages] [bibl. : 10 ref.]
Langue
Anglais
Pour les membres de la communauté du CNRS, ce document est autorisé à la reproduction à titre gratuit.
Pour les membres des communautés hors CNRS, la reproduction de ce document à titre onéreux sera fournie sous réserve d’autorisation du Centre Français d’exploitation du droit de Copie.

Pour bénéficier de nos services (strictement destinés aux membres de la communauté CNRS (Centre National de la Recherche Scientifique), de l'ESR français (Enseignement Supérieur et Recherche), et du secteur public français & étranger) :