Détail de la notice
Titre du Document
Dendroidal sets
Auteur(s)
MOERDIJK Ieke ; WEISS Ittay
Résumé
We introduce the concept of a dendroidal set. This is a generalization of the notion of a simplicial set, specially suited to the study of (coloured) operads in the context of homotopy theory. We define a category of trees, which extends the category A used in simplicial sets, whose presheaf category is the category of dendroidal sets. We show that there is a closed monoidal structure on dendroidal sets which is closely related to the Boardman-Vogt tensor product of (coloured) operads. Furthermore, we show that each (coloured) operad in a suitable model category has a coherent homotopy nerve which is a dendroidal set, extending another construction of Boardman and Vogt. We also define a notion of an inner Kan dendroidal set, which is closely related to simplicial Kan complexes. Finally, we briefly indicate the theory of dendroidal objects in more general monoidal categories, and outline several of the applications and further theory of dendroidal sets.
Editeur
Geometry & Topology Publications
Identifiant
ISSN : 1472-2747
Source
Algebraic and geometric topology (Print) A. 2007, vol. 7, 3, pp. 1441-1470 [30 pages]
Langue
Anglais
Pour les membres de la communauté du CNRS, ce document est autorisé à la reproduction à titre gratuit.
Pour les membres des communautés hors CNRS, la reproduction de ce document à titre onéreux sera fournie sous réserve d’autorisation du Centre Français d’exploitation du droit de Copie.

Pour bénéficier de nos services (strictement destinés aux membres de la communauté CNRS (Centre National de la Recherche Scientifique), de l'ESR français (Enseignement Supérieur et Recherche), et du secteur public français & étranger) :