Détail de la notice
Titre du Document
Slip velocity and lift
Auteur(s)
JOSEPH D. D. ; OCANDO D.
Résumé
The lift force on a circular particle in plane Poiseuille flow perpendicular to gravity is studied by direct numerical simulation. The angular slip velocity Ωs = Qp + 1 2γ, where -1 2 γ is the angular velocity of the fluid at a point where the shear rate is y and Qp is the angular velocity of the particle, is always positive at an equilibrium position at which the hydrodynamic lift balances the buoyant weight. The particle migrates to its equilibrium position and adjusts Qp so that Ωs > 0 is nearly zero because Ωp ≈ -1 2γ. No matter where the particle is placed, it drifts to an equilibrium position with a unique, slightly positive equilibrium angular slip velocity. The angular slip velocity discrepancy defined as the difference between the angular slip velocity of a migrating particle and the angular slip velocity at its equilibrium position is positive below the position of equilibrium and negative above it. This discrepancy is the quantity that changes sign above and below the equilibrium position for neutrally buoyant particles, and also above and below the lower equilibrium position for heavy particles. The existence and properties of unstable positions of equilibrium due to newly identified turning-point transitions and those near the centreline are discussed. The long particle model of Choi & Joseph (2001) that gives rise to an explicit formula for the particle velocity and the velocity profile across the channel through the centreline of the p
Editeur
Cambridge University Press
Identifiant
ISSN : 0022-1120 CODEN : JFLSA7
Source
Journal of Fluid Mechanics A. 2002, vol. 454, pp. 263-286 [24 pages] [bibl. : 18 ref.]
Langue
Anglais
Pour les membres de la communauté du CNRS, ce document est autorisé à la reproduction à titre gratuit.
Pour les membres des communautés hors CNRS, la reproduction de ce document à titre onéreux sera fournie sous réserve d’autorisation du Centre Français d’exploitation du droit de Copie.

Pour bénéficier de nos services (strictement destinés aux membres de la communauté CNRS (Centre National de la Recherche Scientifique), de l'ESR français (Enseignement Supérieur et Recherche), et du secteur public français & étranger) :